数据可视化流程的步骤有:1、定义目标;2、收集数据;3、清理数据;4、选择数据视觉效果;5、创建数据视觉效果。数据可视化是使用图表、图形或地图等可视元素来表示数据的过程。该过程将大量复杂的数值数据转化为更易于处理的可视化表示。
有效的数据可视化包含五个步骤。
您可以通过确定现有数据集可能回答的问题来定义数据可视化目标。明确的目标有助于确定以下内容的类型:
例如,零售商可能会设法了解哪种类型的产品包装销量最高。
数据收集涉及识别内部和外部数据来源。有大量数据集可供在线购买和使用。贵公司可能还拥有可用于分析的现有数据档案。例如,您可以收集历史销量、营销活动和产品包装数据,以找到最佳包装。
数据清理包括移除冗余数据、执行数学运算以进行进一步分析,或者筛选和转换数据以满足质询条件。例如,您可以从假日月份和营销活动之后删除销量数据,以确定不同包装类型的平均销售额。
您可以从几种不同的图表类型中进行选择,以实现高效的视觉发现。数据点与要传达的见解之间的关系将决定最佳的图形表示。例如,您可以使用条形图按颜色表示上个月的包装销售额。但是,饼图可能更适合显示库存中彩色包装的百分比。数据可视化有两种主要类型。
静态可视化仅提供特定数据故事的单一视图。信息图表是静态可视化的一个示例。
交互式可视化允许用户与图形和图表进行交互。浏览者可以更改可视化参数中的变量,以发现新的见解或获取深度信息。数据可视化软件通常会提供用户与系统进行交互的控制面板。
您可以使用数据可视化工具创建所需的数据视觉效果。大多数工具会导入您的最终数据集并自动生成所需的报告。有效数据可视化的一些设计原则包括:
数据科学家为数据可视化集成了三个主要组件:
报告代表的是数据可视化背后的意图。数据科学家与多个利益相关者沟通,了解他们希望通过分析数据实现的目标。例如,他们可能希望衡量关键绩效指标或者预测销量。数据科学家和商业用户合作,确定他们希望通过数据得出的报告。
然后,数据分析师会确定合适的数据集,来帮助他们详细了解数据报告。他们会修改现有数据格式、清理数据、删除异常值并执行进一步分析。数据准备就绪后,他们会设计多种视觉探索方法。
然后,数据科学家选择最适合分享新见解的可视化方法。他们创建图表和图形,突出关键数据点并简化复杂的数据集。他们通过有效的方法系统地呈现商业智能数据。
以上就是关于数据可视化流程有哪些步骤以及数据可视化包含哪些组件的全部内容了,希望对你有所帮助。
最后建议,企业在引入信息化系统初期,切记要合理有效地运用好工具,这样一来不仅可以让公司业务高效地运行,还能最大程度保证团队目标的达成。同时还能大幅缩短系统开发和部署的时间成本。特别是有特定需求功能需要定制化的企业,可以采用我们公司自研的企业级低代码平台:织信Informat。 织信平台基于数据模型优先的设计理念,提供大量标准化的组件,内置AI助手、组件设计器、自动化(图形化编程)、脚本、工作流引擎(BPMN2.0)、自定义API、表单设计器、权限、仪表盘等功能,能帮助企业构建高度复杂核心的数字化系统。如ERP、MES、CRM、PLM、SCM、WMS、项目管理、流程管理等多个应用场景,全面助力企业落地国产化/信息化/数字化转型战略目标。 版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们微信:Informat_5 处理,核实后本网站将在24小时内删除。版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系邮箱:hopper@cornerstone365.cn 处理,核实后本网站将在24小时内删除。