python 编程中 pandas 如何读取 xlsx 文件

首页 / 常见问题 / 低代码开发 / python 编程中 pandas 如何读取 xlsx 文件
作者:软件开发工具 发布时间:01-07 14:14 浏览量:1691
logo
织信企业级低代码开发平台
提供表单、流程、仪表盘、API等功能,非IT用户可通过设计表单来收集数据,设计流程来进行业务协作,使用仪表盘来进行数据分析与展示,IT用户可通过API集成第三方系统平台数据。
免费试用

Pandas是Python中一个强大的数据处理库,可以读取、处理、分析各种形式的数据。在处理.xls和.xlsx文件时,Pandas通过read_excel函数轻松实现这一功能。这主要得益于Pandas背后强大的Excel读取引擎——openpyxl和xlrd。这些库使得读取Excel文件变得既简单又高效。特别是当处理大规模数据时,Pandas显示出其高效和灵活的特点,从而成为数据科学家和分析师的首选工具之一。

在这里,我们将重点讲解如何使用Pandas的read_excel方法读取.xlsx文件read_excel方法默认使用openpyxl作为其引擎,因为openpyxl是处理.xlsx文件的推荐库。使用Pandas读取.xlsx文件时,只需几行代码即可:首先导入Pandas库,然后通过指定文件路径和文件名来调用read_excel方法。这种方法不仅简洁高效,而且可以通过传递不同的参数来定制读取过程,例如读取指定的工作表、指定列、跳过行等。

一、安装必要的库

要使用Pandas读取xlsx文件,首先需要确保你的环境中已经安装了Pandas库。如果还没有安装,可以通过以下命令进行安装:

pip install pandas

除了Pandas,还需要安装openpyxl库,这是Pandas读取Excel文件的推荐引擎。同样地,通过pip命令即可安装:

pip install openpyxl

二、读取整个xlsx文件

读取整个xlsx文件是最基本的操作。通过简单的Python脚本,使用Pandas的read_excel函数,就可以轻松完成这个任务。下面是基本的步骤和相应的代码示例:

首先,需要导入pandas库,并选择合适的读取引擎。然后,使用read_excel函数,指定文件路径和工作簿名称,即可将xlsx文件载入为DataFrame。

import pandas as pd

读取xlsx文件

df = pd.read_excel("example.xlsx", engine='openpyxl')

print(df)

通过这段代码,Pandas会读取example.xlsx文件中的所有数据,并将其作为一个DataFrame对象存储。此时,你可以使用Pandas提供的各种功能对这些数据进行进一步的处理和分析。

三、读取指定工作表

xlsx文件可能包含多个工作表,有时我们只想读取其中的一两个。Pandas提供了灵活的方式来指定需要读取的工作表。

# 读取指定工作表名

df_sheet_name = pd.read_excel("example.xlsx", sheet_name='Sheet1', engine='openpyxl')

print(df_sheet_name)

通过工作表索引读取

df_sheet_index = pd.read_excel("example.xlsx", sheet_name=0, engine='openpyxl')

print(df_sheet_index)

通过指定sheet_name参数,可以直接通过工作表名或其在xlsx文件中的索引位置来读取特定的工作表。这在处理包含多个工作表的情况时特别有用。

四、读取指定列

在许多情况下,我们可能只对文件中的某些列感兴趣。Pandas允许我们在读取文件时就指定需要读取的列。

# 仅读取A和B两列

df_columns = pd.read_excel("example.xlsx", usecols=['A', 'B'], engine='openpyxl')

print(df_columns)

通过usecols参数,可以指定需要加载的列名或列的索引范围,这样就可以在读取数据时直接过滤掉不需要的部分,从而节省内存和处理时间。

五、跳过头几行

有时候,Excel文件的前几行可能是标题或者注释,并不是我们需要分析的数据。Pandas也能够处理这种情况。

# 跳过前3行

df_skiprows = pd.read_excel("example.xlsx", skiprows=3, engine='openpyxl')

print(df_skiprows)

通过skiprows参数,可以指定需要跳过的行数。这样,Pandas就只会从指定的行开始读取数据,非常适合处理包含非数据行的文件。

六、处理大数据文件

当处理大型的Excel文件时,出于性能和内存使用的考虑,可能需要对读取过程进行优化。Pandas提供了几种技巧来优化读取大文件的过程,包括使用dtype参数指定列的数据类型分块读取文件等。

使用dtype可以显著减少内存的占用,因为Pandas默认会尝试为每列数据找到最合适的数据类型。如果你提前知道每列的数据类型,直接指定这些类型可以避免Pandas进行不必要的类型推断,进而加快读取速度并减少内存消耗。

df_dtype = pd.read_excel("example.xlsx", dtype={'ID': int, 'Name': str}, engine='openpyxl')

print(df_dtype)

分块读取是处理大文件的另一个有效策略。通过设置chunksize参数,Pandas会将文件分成小块进行读取和处理。这种方式特别适合处理无法一次性载入内存的大型文件。

# 使用chunksize分块读取大文件

with pd.read_excel("example.xlsx", chunksize=1000, engine='openpyxl') as reader:

for chunk in reader:

print(chunk)

通过掌握以上方法,即使是Excel数据处理的新手也能够利用Pandas库高效地读取和处理.xlsx文件。无论是简单的数据导入,还是复杂的数据预处理,Pandas都能提供强有力的支持。

相关问答FAQs:

可以使用pandas模块中的read_excel()函数来读取xlsx文件。具体步骤如下:

  1. 如何使用read_excel()函数读取xlsx文件?
    可以使用以下代码来读取xlsx文件:
import pandas as pd
df = pd.read_excel('文件路径.xlsx')

其中,'文件路径.xlsx'是待读取的xlsx文件的路径,可以是相对路径或绝对路径。

  1. 如何指定读取特定的工作表?
    默认情况下,read_excel()函数会读取xlsx文件中的第一个工作表。若要指定读取特定的工作表,可以在函数中使用sheet_name参数来指定工作表的名称或索引。例如,使用索引来指定读取第二个工作表:
df = pd.read_excel('文件路径.xlsx', sheet_name=1)

若要读取多个工作表,可以传入一个包含工作表名称或索引的列表。

  1. 如何处理读取到的数据?
    read_excel()函数会将xlsx文件的内容读取为一个DataFrame对象,可以使用DataFrame的各种方法和属性来对数据进行处理。
    例如,可以使用head()方法查看前几行数据:
print(df.head())

还可以使用DataFrame对象的shape属性获取数据的行列数:

print(df.shape)

此外,还可以对数据进行筛选、排序、统计等操作,以满足具体需求。

最后建议,企业在引入信息化系统初期,切记要合理有效地运用好工具,这样一来不仅可以让公司业务高效地运行,还能最大程度保证团队目标的达成。同时还能大幅缩短系统开发和部署的时间成本。特别是有特定需求功能需要定制化的企业,可以采用我们公司自研的企业级低代码平台织信Informat。 织信平台基于数据模型优先的设计理念,提供大量标准化的组件,内置AI助手、组件设计器、自动化(图形化编程)、脚本、工作流引擎(BPMN2.0)、自定义API、表单设计器、权限、仪表盘等功能,能帮助企业构建高度复杂核心的数字化系统。如ERP、MES、CRM、PLM、SCM、WMS、项目管理、流程管理等多个应用场景,全面助力企业落地国产化/信息化/数字化转型战略目标。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系邮箱:hopper@cornerstone365.cn 处理,核实后本网站将在24小时内删除。

最近更新

怎么改造研发团队研发流程
01-17 18:02
研发流程用什么软件做
01-17 18:02
团队技术研发流程表怎么做
01-17 18:02
如何优化研发流程以缩短产品上市时间
01-17 18:02
研发流程团队 职责是什么
01-17 18:02
软件传统研发流程包括什么
01-17 18:02
企业级低代码开发:《企业级低代码开发实践》
01-17 17:28
低代码布局:《低代码布局设计技巧》
01-17 17:28
低代码好处:《低代码开发的优势》
01-17 17:28

立即开启你的数字化管理

用心为每一位用户提供专业的数字化解决方案及业务咨询

  • 深圳市基石协作科技有限公司
  • 地址:深圳市南山区科技中一路大族激光科技中心909室
  • 座机:400-185-5850
  • 手机:137-1379-6908
  • 邮箱:sales@cornerstone365.cn
  • 微信公众号二维码

© copyright 2019-2024. 织信INFORMAT 深圳市基石协作科技有限公司 版权所有 | 粤ICP备15078182号

前往Gitee仓库
微信公众号二维码
咨询织信数字化顾问获取最新资料
数字化咨询热线
400-185-5850
申请预约演示
立即与行业专家交流